摘要
肺癌是全球最常见的恶性肿瘤之一,KRAS是肺癌发生基因突变的重要位点。由于KRAS突变亚型中常缺乏药理学药物靶向的口袋,KRAS突变位点一直被认为是“不可成药”的靶点。本文主要概括了KRAS突变型肺癌的作用机制和KRAS成药所面临的困难,并对KRAS突变的治疗策略和耐药机制的最新进展进行阐述。
肺癌是全球发病率和死亡率最高的恶性肿瘤之一,严重危害人类的健
KRAS基因是RAS基因家族成员之一。在RAS基因家族中,还有NRAS(neuroblastoma-RAS)和HRAS(Harvey-RAS
KRAS失活与激活状态的转换主要受到两类因子的调节。一类是鸟嘌呤核苷酸交换因子(guanosine exchange factor, GEF),主要作用是增强KRAS与鸟苷三磷酸(guanosine triphosphate, GTP)的结合能力,从而促进KRAS的激

图1 KRAS GTP酶循环
Fig. 1 KRAS GTPase cycle
KRAS的上游信号通路主要包括细胞表面受体,在受到外界信号刺激后,通过KRAS传递信号刺激细胞增殖和迁
KRAS信号通路的主要作用是通过激活下游信号分子调节细胞增殖、分化和存活。下游途径包括RAF-MEK-ERK、PI3K-AKT-mTOR、RALGDS-RAL
长久以来,靶向KRAS的治疗一直受到KRAS结构和生化特征的阻碍,促使人们普遍认为KRAS蛋白是不可靶向
近年来,研究者一直在尝试开发针对KRAS突变的药物,并已探索了各种策略,包括干扰KRAS蛋白本身、改变其在细胞膜上的位置、阻断其与其他蛋白质的相互作用等,但很少有方法能够在临床试验中取得成
免疫治疗是NSCLC的一种新兴疗法,可通过激活患者的免疫系统抑制肿瘤生
近年来,KRAS的直接靶向药物取得了极大进展,特别是KRA
药物 | 临床试验编号 | 例数 | ORR/% | DCR/% | 中位PFS/月 | 中位OS/月 | 不良反应 |
---|---|---|---|---|---|---|---|
AMG-510 | NCT03600883 | 174 | 41 | 83.70 | 6.3 | 12.5 | 腹痛、腹泻、恶心、呕吐、肝功能检测异常 |
MRTX849 | NCT03785249 | 112 | 43 | 79.50 | 6.6 | 12.6 | 腹痛、腹泻、恶心、肌肉骨骼疼痛、肝毒性 |
LY3537982 | NCT04956640 | 75 | 38 | 88 | NA | NA | NA |
JNJ-74699157 | NCT04006301 | 10 | NA | NA | NA | NA | 骨骼肌肉毒性 |
D-1553 | NCT04585035 | 74 | 40.50 | 91.90 | 8.2 | NA | 腹痛、腹泻、恶心、呕吐 |
GDC 6036 | NCT04449874 | 135 | 37 | NA | NA | NA | 恶心、呕吐、腹泻、转氨酶升高 |
注: NA指没有相关数据。
Note: NA meant the related data was not available.
sotorasib是一种专门针对KRA
adagrasib(MRTX849)同样是一种口服小分子共价KRAS抑制剂。Ⅰ/Ⅱ期KRYSTAL-1研究已初步证明了adagrasib对晚期NSCLC的疗效,中位PFS为11.1个
Genetech公司研发的divarasib(GDC-6036)是一种相较于sotorasib和adagrasib而言具有高效力(高达5~20倍)和高选择性(高达50倍)的KRA
AMG510和MRTX849将为KRA
尽管上述KRAS突变抑制剂显示了明显的治疗效果,但在临床使用中仍会出现耐药现
近十年来,靶向治疗和免疫治疗药物的快速发展使得晚期NSCLC的治疗进入精准治疗时
sotorasib是第一个进入临床试验的KRAS抑制剂,目前已获FDA批准上市,为KRA
sotorasib和adagrasib这两个靶向药物的问世,开创了靶向KRAS的新时代,给无数KRAS突变患者带来了福音。然而有部分数据表明,这些药物远未达到治愈效果,这是因为单药治疗几乎都会产生耐药
尽管KRAS突变晚期NSCLC的治疗方法和疗效已经有明显改善,但仍有许多问题未解决,例如耐药机制、药物毒
参考文献
LIU S Y M, ZHENG M M, PAN Y, et al. Emerging evidence and treatment paradigm of non-small cell lung cancer [J]. J Hematol Oncol, 2023, 16(1): 40. DOI: 10.1186/s13045-023-01436-2. [百度学术]
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021 [J]. CA A Cancer J Clinicians, 2021, 71(1): 7-33. DOI: 10.3322/caac.21654. [百度学术]
GIMPLE R C, WANG X X. RAS: striking at the core of the oncogenic circuitry [J]. Front Oncol, 2019, 9: 965. DOI: 10.3389/fonc.2019.00965. [百度学术]
NEGRI F, BOTTARELLI L, DE’ANGELIS G L, et al. KRAS: a druggable target in colon cancer patients [J]. Int J Mol Sci, 2022, 23(8): 4120. DOI: 10.3390/ijms23084120. [百度学术]
CEDDIA S, LANDI L, CAPPUZZO F. KRAS-mutant non-small-cell lung cancer: from past efforts to future challenges [J]. Int J Mol Sci, 2022, 23(16): 9391. DOI: 10.3390/ijms23169391. [百度学术]
NAGASAKA M, LI Y W, SUKARI A, et al. KRA
CANON J, REX K, SAIKI A Y, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity [J]. Nature, 2019, 575(7781): 217-223. DOI: 10.1038/s41586-019-1694-1. [百度学术]
SKOULIDIS F, LI B T, DY G K, et al. Sotorasib for lung cancers with KRAS p.G12C mutation [J]. N Engl J Med, 2021, 384(25): 2371-2381. DOI: 10.1056/NEJMoa2103695. [百度学术]
PANG Z, RAUDONIS R, GLICK B R, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies [J]. Biotechnol Adv, 2019, 37(1): 177-192. DOI: 10.1016/j.biotechadv.2018.11.013. [百度学术]
HALLIN J, ENGSTROM L D, HARGIS L, et al. The KRA
SKOULIDIS F, BYERS L A, DIAO L X, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities [J]. Cancer Discov, 2015, 5(8): 860-877. DOI: 10.1158/2159-8290.CD-14-1236. [百度学术]
HUANG L M, GUO Z X, WANG F, et al. KRAS mutation: from undruggable to druggable in cancer [J]. Signal Transduct Target Ther, 2021, 6(1): 386. DOI: 10.1038/s41392-021-00780-4. [百度学术]
SIMANSHU D K, NISSLEY D V, MCCORMICK F. RAS proteins and their regulators in human disease [J]. Cell, 2017, 170(1): 17-33. DOI: 10.1016/j.cell.2017.06.009. [百度学术]
COX A D, FESIK S W, KIMMELMAN A C, et al. Drugging the undruggable RAS: mission possible? [J]. Nat Rev Drug Discov, 2014, 13(11): 828-851. DOI: 10.1038/nrd4389. [百度学术]
UPRETY D, ADJEI A A. KRAS: from undruggable to a druggable cancer target [J]. Cancer Treat Rev, 2020, 89: 102070. DOI: 10.1016/j.ctrv.2020.102070. [百度学术]
PRIOR I A, LEWIS P D, MATTOS C. A comprehensive survey of Ras mutations in cancer [J]. Cancer Res, 2012, 72(10): 2457-2467. DOI: 10.1158/0008-5472.CAN-11-2612. [百度学术]
DIENSTMANN R, CONNOR K, BYRNE A T, et al. Precision therapy in RAS mutant colorectal cancer [J]. Gastroenterology, 2020, 158(4): 806-811. DOI: 10.1053/j.gastro.2019.12.051. [百度学术]
FERRER I, ZUGAZAGOITIA J, HERBERTZ S, et al. KRAS-Mutant non-small cell lung cancer: from biology to therapy [J]. Lung Cancer, 2018, 124: 53-64. DOI: 10.1016/j.lungcan.2018.07.013. [百度学术]
TANG D L, KROEMER G, KANG R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges [J]. Mol Cancer, 2021, 20(1): 128. DOI: 10.1186/s12943-021-01422-7. [百度学术]
ROMÁN M, BARAIBAR I, LÓPEZ I, et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target [J]. Mol Cancer, 2018, 17(1): 33. DOI: 10.1186/s12943-018-0789-x. [百度学术]
FRIEDLAENDER A, DRILON A, WEISS G J, et al. KRAS as a druggable target in NSCLC: rising like a phoenix after decades of development failures [J]. Cancer Treat Rev, 2020, 85: 101978. DOI: 10.1016/j.ctrv.2020.101978. [百度学术]
PATRICELLI M P, JANES M R, LI L S, et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state [J]. Cancer Discov, 2016, 6(3): 316-329. DOI: 10.1158/2159-8290.CD-15-1105. [百度学术]
LIU P Y, WANG Y J, LI X. Targeting the untargetable KRAS in cancer therapy [J]. Acta Pharm Sin B, 2019, 9(5): 871-879. DOI: 10.1016/j.apsb.2019.03.002. [百度学术]
SCHEFFLER M, IHLE M A, HEIN R, et al. K-ras mutation subtypes in NSCLC and associated co-occuring mutations in other oncogenic pathways [J]. J Thorac Oncol, 2019, 14(4): 606-616. DOI: 10.1016/j.jtho.2018.12.013. [百度学术]
OSTREM J M, PETERS U, SOS M L, et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions [J]. Nature, 2013, 503(7477): 548-551. DOI: 10.1038/nature12796. [百度学术]
RECK M, CARBONE D P, GARASSINO M, et al. Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches [J]. Ann Oncol, 2021, 32(9): 1101-1110. DOI: 10.1016/j.annonc.2021.06.001. [百度学术]
URAS I Z, MOLL H P, CASANOVA E. Targeting KRAS mutant non-small-cell lung cancer: past, present and future [J]. Int J Mol Sci, 2020, 21(12): 4325. DOI: 10.3390/ijms 21124325. [百度学术]
KOGA T, SUDA K, FUJINO T, et al. KRAS secondary mutations that confer acquired resistance to KRAS G12C inhibitors, sotorasib and adagrasib, and overcoming strategies: insights from in vitro experiments [J]. J Thorac Oncol, 2021, 16(8): 1321-1332. DOI: 10.1016/j.jtho.2021.04.015. [百度学术]
AWAD M M, LIU S W, RYBKIN I I, et al. Acquired resistance to KRA
PUNEKAR S R, VELCHETI V, NEEL B G, et al. The Current state of the art and future trends in RAS-targeted cancer therapies [J]. Nat Rev Clin Oncol, 2022, 19(10): 637-655. DOI: 10.1038/s41571-022-00671-9. [百度学术]
THEIN K Z, BITER A B, HONG D S. Therapeutics targeting mutant KRAS [J]. Annu Rev Med, 2021, 72: 349-364. DOI: 10.1146/annurev-med-080819-033145. [百度学术]
CHRISTENSEN J G, OLSON P, BRIERE T, et al. Targeting KRA
MELLEMA W W, MASEN-POOS L, SMIT E F, et al. Comparison of clinical outcome after first-line platinum-based chemotherapy in different types of KRAS mutated advanced non-small-cell lung cancer [J]. Lung Cancer, 2015, 90(2): 249-254. DOI: 10.1016/j.lungcan.2015.09.012. [百度学术]
HAMES M L, CHEN H D, IAMS W, et al. Correlation between KRAS mutation status and response to chemotherapy in patients with advanced non-small cell lung cancer [J]. Lung Cancer, 2016, 92: 29-34. DOI: 10.1016/j.lungcan.2015.11.004. [百度学术]
ALEXANDER M, KIM S Y, CHENG H Y. Update 2020: management of non-small cell lung cancer [J]. Lung, 2020, 198(6): 897-907. DOI: 10.1007/s00408-020-00407-5. [百度学术]
RUIZ-CORDERO R, DEVINE W P. Targeted therapy and checkpoint immunotherapy in lung cancer [J]. Surg Pathol Clin, 2020, 13(1): 17-33. DOI: 10.1016/j.path.2019.11.002. [百度学术]
LINDSAY C R, GARASSINO M C, NADAL E, et al. On target: rational approaches to KRAS inhibition for treatment of non-small cell lung carcinoma [J]. Lung Cancer, 2021, 160: 152-165. DOI: 10.1016/j.lungcan.2021.07.005. [百度学术]
SALEM M E, EL-REFAI S M, SHA W, et al. Landscape of KRA
TOKI M I, MANI N, SMITHY J W, et al. Immune marker profiling and programmed death ligand 1 expression across NSCLC mutations [J]. J Thorac Oncol, 2018, 13(12): 1884-1896. DOI: 10.1016/j.jtho.2018.09.012. [百度学术]
DONG Z Y, ZHONG W Z, ZHANG X C, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma [J]. Clin Cancer Res, 2017, 23(12): 3012-3024. DOI: 10.1158/1078-0432.CCR-16-2554. [百度学术]
LIU C M, ZHENG S F, JIN R S, et al. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity [J]. Cancer Lett, 2020, 470: 95-105. DOI: 10.1016/j.canlet.2019.10.027. [百度学术]
MOK T S K, LOPES G, CHO B C, et al. Associations of tissue tumor mutational burden and mutational status with clinical outcomes in KEYNOTE-042: pembrolizumab versus chemotherapy for advanced PD-L1-positive NSCLC [J]. Ann Oncol, 2023, 34: 377-388. DOI: 10.1016/j.annonc.2023.01.011. [百度学术]
BORGHAEI H, PAZ-ARES L, HORN L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer [J]. N Engl J Med, 2015, 373: 1627-1639. DOI: 10.1056/NEJMoa1507643. [百度学术]
SOCINSKI M A, NISHIO M, JOTTE R M, et al. Impower150 final overall survival analyses for atezolizumab plus bevacizumab and chemotherapy in first-line metastatic nonsquamous NSCLC [J]. J Thorac Oncol, 2021, 16(11): 1909-1924. DOI: 10.1016/j.jtho.2021.07.009. [百度学术]
HONG D S, FAKIH M G, STRICKLER J H, et al. KRA
ZHANG S S, LEE A, NAGASAKA M. CodeBreaK 200: sotorasib has not broken the KRA
NAKAJIMA E C, DREZNER N, LI X X, et al. FDA approval summary: sotorasib for KRA
DE LANGEN A J, JOHNSON M L, MAZIERES J, et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRAS(G12C) mutation: a randomised, open-label, phase 3 trial [J]. Lancet, 2023, 401: 733-746. DOI: 10.1016/S0140-6736(23)00221-0. [百度学术]
OU S H I, JÄNNE P A, LEAL T A, et al. First-in-human phase I/IB dose-finding study of adagrasib (MRTX849) in patients with advanced KRA
JÄNNE P A, RIELY G J, GADGEEL S M, et al. Adagrasib in non–small-cell lung cancer harboring a KRA
SACHER A, LORUSSO P, PATEL M R, et al. Single-agent divarasib (GDC-6036) in solid tumors with a KRA
Multiple mechanisms underlie the acquired resistance to KRA
XUE J Y, ZHAO Y L, ARONOWITZ J, et al. Rapid non-uniform adaptation to conformation-specific KRA
BROWN W S, MCDONALD P C, NEMIROVSKY O, et al. Overcoming adaptive resistance to KRAS and MEK inhibitors by co-targeting mTORC1/2 complexes in pancreatic cancer [J]. Cell Rep Med, 2020, 1(8): 100131. DOI: 10.1016/j.xcrm.2020.100131. [百度学术]
WANG M N, HERBST R S, BOSHOFF C. Toward personalized treatment approaches for non-small-cell lung cancer [J]. Nat Med, 2021, 27(8): 1345-1356. DOI: 10.1038/s41591-021-01450-2. [百度学术]
KNETKI-WRÓBLEWSKA M, TABOR S, PŁUŻAŃSKI A, et al. Efficacy of immunotherapy in second-line treatment of KRAS-mutated patients with non-small-cell lung cancer-data from daily practice [J]. Curr Oncol, 2022, 30(1): 462-475. DOI: 10.3390/curroncol30010037. [百度学术]
HIRSCH F R, SCAGLIOTTI G V, MULSHINE J L, et al. Lung cancer: current therapies and new targeted treatments [J]. Lancet, 2017, 389(10066): 299-311. DOI: 10.1016/S0140-6736(16)30958-8. [百度学术]
TAN A C, TAN D S W. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations [J]. J Clin Oncol, 2022, 40(6): 611-625. DOI: 10.1200/JCO.21.01626. [百度学术]
ZHU C X, GUAN X Q, ZHANG X N, et al. Targeting KRAS mutant cancers: from druggable therapy to drug resistance [J]. Mol Cancer, 2022, 21(1): 159. DOI: 10.1186/s12943-022-01629-2. [百度学术]
MURCIANO-GOROFF YR, HEIST RS, KUBOKI Y, et al. A first-in-human phase 1 study of LY3537982, a highly selective and potent KRAS G12C inhibitor in patients with KRAS G12C-mutant advanced solid tumors [J]. Cancer Res, 2023, 83(suppl 8): CT028. DOI: 10.1158/1538-7445.AM2023-CT028. [百度学术]
WAINBERG Z A, ALSINA M, SOARES H P, et al. A multi-arm phase I study of the PI3K/mTOR inhibitors PF-04691502 and gedatolisib (PF-05212384) plus irinotecan or the MEK inhibitor PD-0325901 in advanced cancer [J]. Target Oncol, 2017, 12(6): 775-785. DOI: 10.1007/s11523-017-0530-5. [百度学术]
GRILLEY-OLSON J E, BEDARD P L, FASOLO A, et al. A phase Ib dose-escalation study of the MEK inhibitor trametinib in combination with the PI3K/mTOR inhibitor GSK2126458 in patients with advanced solid tumors [J]. Invest New Drugs, 2016, 34(6): 740-749. DOI: 10.1007/s10637-016-0377-0. [百度学术]