摘要
SMAD4是TGF-β信号通路的关键下游效应分子,在细胞的分化、迁移、侵袭和凋亡中发挥重要作用,其功能失活或表达下调可能影响TGF-β信号转导并进一步影响肿瘤的发生发展。SMAD4在肿瘤的发展和治疗中起着关键作用,在包括肺癌在内的多种肿瘤中已得到广泛证实。本文就SMAD4突变在肺腺癌中的表达、转移及预后中的作用作一综述,旨在为肺腺癌治疗提供新的理论参考。
2020年全球癌症数据统计显示,肺癌新发患者约占全球癌症新发患者的11.7%,仅次于乳腺癌,居第2位;死亡率约18.4%,居首
近年来,TGF-β信号通路的关键下游效应分子SMAD4在肺癌、胰腺癌、胃癌、结直肠癌等肿瘤中的作用被广泛关注,但其突变在NSCLC中的作用机制仍研究较少。临床研究发现,LUAD中存在敏感基因突变的患者发生SMAD4突变后靶向治疗效果较差,提示SMAD4突变可能影响LUAD的治疗效果。本文主要就近年来SMAD4突变在LUAD中的研究进展作一综述。
SMAD4作为TGF-β信号通路的核心介导分子,在肿瘤的发生发展中起着关键作用。人SMAD4基因位于染色体18q21.1,由12个外显子和10个内含子组成,跨越SMAD4的全长(1 659 bp)转录
TGF-β家族成员包括TGF-β1、激活素、骨形态发生蛋白、抗缪勒氏管激素、Nodal以及一些生长因子。TGF-β蛋白在肿瘤的发生中具有双重作用:在肿瘤形成的早期阶段,TGF-β通过诱导细胞周期停滞和细胞凋亡发挥抑制作用;随着肿瘤的发展,TGF-β可增强肿瘤的免疫抑制作用,促进肿瘤血管生成和侵袭、转
经典的TGF-β/SMAD4信号通路控制从细胞膜到细胞核的信号转导并参与广泛的细胞过程,包括增殖、分化、凋亡、迁移以及肿瘤的发生和发
在过去的十年里,晚期LUAD患者的治疗已经从基于组织病理分型的传统化疗、放疗,发展到基于分子病理分型、个体化的分子靶向治疗模式。靶向治疗相较于传统放化疗模式可显著延长患者的生存时间,改善患者的生存质量。对于EGFR、ALK、Ros1、C-met、Ret、PD-1/PD-L1等驱动基因阳性的晚期LUAD患者,靶向治疗已作为Ⅰ级推荐应用于临床。尽管靶向治疗在LUAD的筛查和治疗方面取得了长足进步,但耐药问题仍不容忽视,新的突变靶点亟待研究。
SMAD4作为Co-SMAD的成员之一,被认为是一种抑癌基因,其大多数突变发生在MH1和MH2结构域,其中MH2结构域比MH1结构域或连接区突变更为频
突变、拷贝丢失和转录下调共同作用可导致SMAD4表达下调,并在包括NSCLC在内的多种恶性肿瘤中被证
3 SMAD4突变与LUAD转移机制(图1 )
转移是肺癌预后差、复发率高的原

图1 SMAD4突变与LUAD转移机制图
Fig. 1 Mechanism diagram of SMAD4 mutations and LUAD metastasis
RGS6属于RGS蛋白超家族,作为Gα亚基的GTP酶激活蛋白,通过负向调节异源三聚体G蛋白信号诱导肿瘤细胞周期停滞和凋亡。在TGF-β缺失的情况下,RGS6与SMAD4共免疫沉淀,但与SMAD2或SMAD3均未共免疫沉淀。RGS6和SMAD4之间的相互作用阻止了SMAD4和磷酸化SMAD2/3之间的复合物形成,而SMAD4和磷酸化SMAD2/3之间的复合物形成被认为有助于活化的SMAD2/3转位到细胞核中,从而触发其靶基因表达。因此,通过RGS6阻止SMAD4和磷酸化SMAD2/3之间的复合物形成可能使R-SMADs保留在细胞质中,从而导致R-SMADs与共激活剂之间的不良关联,造成R-SMADs介导的基因表达效率低下。在人肺癌组织中,RGS6 mRNA和蛋白水平均低于正常肺组织,RGS6低表达在转移性肺癌组织中更为突出,且与肺癌患者的预后不良相
长链非编码RNA(long non-coding RNA, lncRNA)是长度超过200个核苷酸的非编码RNA,缺乏开放的阅读框架。lncRNA异常表达可能是肿瘤发生的主要因素之
TCGA数据显示,13%的肺鳞癌和47%的LUAD中存在SMAD4杂合性缺
既往有关转移性结直肠癌患者使用西妥昔单抗治疗的研究发现,SMAD4突变与西妥昔单抗治疗预后不良相
目前,针对SMAD4突变在LUAD患者中的表达、转移、耐药及预后等机制的研究仍相对匮乏,缺少高水平的研究证据及临床试验。随着基因检测水平逐步提升,以及SMAD4突变在肿瘤中的深入研究,临床治疗中针对该靶点药物的研发亟待解决,因此,进一步深入探究LUAD中SMAD4突变的异常调节机制及临床相关性研究,将有助于指导LUAD的临床诊断及靶向治疗。
参考文献
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660. [百度学术]
WANG Y Q, LI H Z, GONG W W, et al. Cancer incidence and mortality in Zhejiang Province, Southeast China, 2016: a population-based study [J]. Chin Med J (Engl), 2021, 134(16): 1959-1966. DOI: 10.1097/CM9.0000000000001666. [百度学术]
SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020 [J]. CA A Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590. [百度学术]
RUIZ-CORDERO R, DEVINE W P. Targeted therapy and checkpoint immunotherapy in lung cancer [J]. Surg Pathol Clin, 2020, 13(1): 17-33. DOI: 10.1016/j.path.2019.11.002. [百度学术]
ETTINGER D S, WOOD D E, AISNER D L, et al. NCCN clinical practice guidelines in oncology: non-small cell lung cancer (version 2.2021) [J]. J Natl Compr Canc Netw. 2021 ,19(3): 254-266. DOI: 10.6004/jnccn.2021.0013. [百度学术]
ZENG Z G, YANG Y T, QING C, et al. Distinct expression and prognostic value of members of SMAD family in non-small cell lung cancer [J]. Medicine, 2020, 99(10): e19451. DOI: 10.1097/md.0000000000019451. [百度学术]
BOONE B A, SABBAGHIAN S, ZENATI M, et al. Loss of SMAD4 staining in pre-operative cell blocks is associated with distant metastases following pancreaticoduodenectomy with venous resection for pancreatic cancer [J]. J Surg Oncol, 2014, 110(2): 171-175. DOI: 10.1002/jso.23606. [百度学术]
SHI Y G, MASSAGUÉ J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus [J]. Cell, 2003, 113(6): 685-700. DOI: 10.1016/s0092-8674(03)00432-x. [百度学术]
HAHN S A, SCHUTTE M, SHAMSUL HOQUE A T M, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1 [J]. Science, 1996, 271(5247): 350-353. DOI: 10.1126/science.271.5247.350. [百度学术]
MAMOT C, MILD G, REUTER J, et al. Infrequent mutation of the tumour-suppressor gene SMAD4 in early-stage colorectal cancer [J]. Br J Cancer, 2003, 88(3): 420-423. DOI: 10.1038/sj.bjc.6600733. [百度学术]
CONNOLLY E C, FREIMUTH J, AKHURST R J. Complexities of TGF-β targeted cancer therapy [J]. Int J Biol Sci, 2012, 8(7): 964-978. DOI: 10.7150/ijbs.4564. [百度学术]
ZHAO M, MISHRA L, DENG C X. The role of TGF-β/SMAD4 signaling in cancer [J]. Int J Biol Sci, 2018, 14(2): 111-123. DOI: 10.7150/ijbs.23230. [百度学术]
MASSAGUÉ J, BLAIN S W, LO R S. TGFβ signaling in growth control, cancer, and heritable disorders [J]. Cell, 2000, 103(2): 295-309. DOI: 10.1016/S0092-8674(00)00121-5. [百度学术]
HUANG S L, HE X H, DING J, et al. Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells [J]. Int J Cancer, 2008, 123(4): 972-978. DOI: 10.1002/ijc.23580. [百度学术]
JIANG T, YE L, HAN Z B, et al. miR-19b-3p promotes colon cancer proliferation and oxaliplatin-based chemoresistance by targeting SMAD4: validation by bioinformatics and experimental analyses [J]. J Exp Clin Cancer Res, 2017, 36(1): 131. DOI: 10.1186/s13046-017-0602-5. [百度学术]
IACOBUZIO-DONAHUE C A, SONG J, PARMIAGIANI G, et al. Missense mutations of MADH4: characterization of the mutational hot spot and functional consequences in human tumors [J]. Clin Cancer Res, 2004, 10(5): 1597-1604. DOI: 10.1158/1078-0432.ccr-1121-3. [百度学术]
GALLIONE C, AYLSWORTH A S, BEIS J, et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome [J]. Am J Med Genet A, 2010, 152A(2): 333-339. DOI: 10.1002/ajmg.a.33206. [百度学术]
CALVA-CERQUEIRA D, CHINNATHAMBI S, PECHMAN B, et al. The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis [J]. Clin Genet, 2009, 75(1): 79-85. DOI: 10.1111/j.1399-0004.2008.01091.x. [百度学术]
FLEMING N I, JORISSEN R N, MOURADOV D, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer [J]. Cancer Res, 2013, 73(2): 725-735. DOI: 10.1158/0008-5472.CAN-12-2706. [百度学术]
DE BOSSCHER K, HILL C S, NICOLÁS F J. Molecular and functional consequences of SMAD4 C-terminal missense mutations in colorectal tumour cells [J]. Biochem J, 2004, 379(Pt 1): 209-216. DOI: 10.1042/BJ20031886. [百度学术]
WOODFORD-RICHENS K L, ROWAN A J, GORMAN P, et al. SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway [J]. Proc Natl Acad Sci USA, 2001, 98(17): 9719-9723. DOI: 10.1073/pnas.171321498. [百度学术]
ROCHA B R, COLLI S D, BARCELOS L M, et al. Age-dependent expression of PTEN and SMAD4 genes in the urogenital system of Wistar rats [J]. Acta Cir Bras, 2014, 29(Suppl 1): 34-38. DOI: 10.1590/s0102-86502014001300007. [百度学术]
BIAN C N, LI Z Y, XU Y T, et al. Clinical outcome and expression of mutant P53, P16, and SMAD4 in lung adenocarcinoma: a prospective study [J]. World J Surg Oncol, 2015, 13: 128. DOI: 10.1186/s12957-015-0502-0. [百度学术]
KE Z F, ZHANG X W, MA L L, et al. Deleted in pancreatic carcinoma locus 4/SMAD4 participates in the regulation of apoptosis by affecting the Bcl-2/Bax balance in non-small cell lung cancer [J]. Hum Pathol, 2008, 39(10): 1438-1445. DOI: 10.1016/j.humpath.2008.03.006. [百度学术]
HAEGER S M, THOMPSON J J, KALRA S, et al. SMAD4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors [J]. Oncogene, 2016, 35(5): 577-586. DOI: 10.1038/onc.2015.112. [百度学术]
LIU J, CHO S N, AKKANTI B, et al. ErbB2 pathway activation upon SMAD4 loss promotes lung tumor growth and metastasis [J]. Cell Rep, 2015, 10(9): 1599-1613. DOI: 10.1016/j.celrep.2015.02.014. [百度学术]
ZENG Y Y, ZHU J J, SHEN D, et al. microRNA-205 targets SMAD4 in non-small cell lung cancer and promotes lung cancer cell growth in vitro and in vivo [J]. Oncotarget, 2017, 8(19): 30817-30829. DOI: 10.18632/oncotarget.10339. [百度学术]
WANG Y, XUE Q Q, ZHENG Q, et al. SMAD4 mutation correlates with poor prognosis in non-small cell lung cancer [J]. Lab Invest, 2021, 101(4): 463-476. DOI: 10.1038/s41374-020-00517-x. [百度学术]
GUO X J, LI M M, WANG X, et al. Correlation between loss of SMAD4 and clinical parameters of non-small cell lung cancer: an observational cohort study [J]. BMC Pulm Med, 2021, 21(1): 111. DOI: 10.1186/s12890-021-01480-z. [百度学术]
JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics [J]. CA Cancer J Clin, 2011, 61(2): 69-90. DOI: 10.3322/caac.20107. [百度学术]
THIERY J P, ACLOQUE H, HUANG R Y J, et al. Epithelial-mesenchymal transitions in development and disease [J]. Cell, 2009, 139(5): 871-890. DOI: 10.1016/j.cell.2009.11.007. [百度学术]
THIERY J P, SLEEMAN J P. Complex networks orchestrate epithelial-mesenchymal transitions [J]. Nat Rev Mol Cell Biol, 2006, 7(2): 131-142. DOI: 10.1038/nrm1835. [百度学术]
WANG Z, CHEN J, WANG S J, et al. RGS6 suppresses TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancers via a novel mechanism dependent on its interaction with SMAD4 [J]. Cell Death Dis, 2022, 13(7): 656. DOI: 10.1038/s41419-022-05093-0. [百度学术]
RICHARDS E J, ZHANG G, LI Z P, et al. Long non-coding RNAs (lncRNA) regulated by transforming growth factor (TGF) β: lncRNA-hit-mediated TGFβ-induced epithelial to mesenchymal transition in mammary epithelia [J]. J Biol Chem, 2015, 290(11): 6857-6867. DOI: 10.1074/jbc.M114.610915. [百度学术]
XIE H S, SHI S S, CHEN Q, et al. LncRNA TRG-AS1 promotes glioblastoma cell proliferation by competitively binding with miR-877-5p to regulate SUZ12 expression [J]. Pathol Res Pract, 2019, 215(8): 152476. DOI: 10.1016/j.prp.2019. 52476. [百度学术]
HE S W, WANG X, ZHANG J J, et al. TRG-AS1 is a potent driver of oncogenicity of tongue squamous cell carcinoma through microRNA-543/Yes-associated protein 1 axis regulation [J]. Cell Cycle, 2020, 19(15): 1969-1982. DOI: 10.1080/15384101.2020.1786622. [百度学术]
SUN X H, QIAN Y B, WANG X Y, et al. LncRNA TRG-AS1 stimulates hepatocellular carcinoma progression by sponging miR-4500 to modulate BACH1 [J]. Cancer Cell Int, 2020, 20: 367. DOI: 10.1186/s12935-020-01440-3. [百度学术]
ZHANG M Y, ZHU W G, HAERYFAR M, et al. Long non-coding RNA TRG-AS1 promoted proliferation and invasion of lung cancer cells through the miR-224-5p/SMAD4 axis [J]. Onco Targets Ther, 2021, 14: 4415-4426. DOI: 10.2147/OTT.S297336. [百度学术]
WANG Y, REN J W, GAO Y, et al. microRNA-224 targets SMAD family member 4 to promote cell proliferation and negatively influence patient survival [J]. PLoS One, 2013, 8(7): e68744. DOI: 10.1371/journal.pone.0068744. [百度学术]
LIAO W T, LI T T, WANG Z G, et al. microRNA-224 promotes cell proliferation and tumor growth in human colorectal cancer by repressing PHLPP1 and PHLPP2 [J]. Clin Cancer Res, 2013, 19(17): 4662-4672. DOI: 10.1158/1078-0432.CCR-13-0244. [百度学术]
HUANG L, DAI T, LIN X, et al. microRNA-224 targets RKIP to control cell invasion and expression of metastasis genes in human breast cancer cells [J]. Biochem Biophys Res Commun, 2012, 425(2): 127-133. DOI: 10.1016/j.bbrc.2012.07.025. [百度学术]
CUI R, MENG W, SUN H L, et al. microRNA-224 promotes tumor progression in nonsmall cell lung cancer [J]. Proc Natl Acad Sci USA, 2015, 112(31): E4288-E4297. DOI: 10.1073/pnas.1502068112. [百度学术]
MA J J, HUANG K M, MA Y, et al. The TAZ-miR-224-SMAD4 axis promotes tumorigenesis in osteosarcoma [J]. Cell Death Dis, 2017, 8(1): e2539. DOI: 10.1038/cddis.2016.468. [百度学术]
WANG Z Z, YANG J, DI J B, et al. Downregulated USP3 mRNA functions as a competitive endogenous RNA of SMAD4 by sponging miR-224 and promotes metastasis in colorectal cancer [J]. Sci Rep, 2017, 7(1): 4281. DOI: 10.1038/s41598-017-04368-3. [百度学术]
IMIELINSKI M, BERGER A, HAMMERMAN P, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing [J]. Cell, 2012, 150(6): 1107-1120. DOI: 10.1016/j.cell.2012.08.029. [百度学术]
NETWORK C G A R. Comprehensive genomic characterization of squamous cell lung cancers [J]. Nature, 2012, 489(7417): 519-525. DOI: 10.1038/nature11404. [百度学术]
TAN X H, TONG L, LI L, et al. Loss of SMAD4 promotes aggressive lung cancer metastasis by de-repression of PAK3 via miRNA regulation [J]. Nat Commun, 2021, 12(1): 4853. DOI: 10.1038/s41467-021-24898-9. [百度学术]
LU C, NING G Y, SI P P, et al. E3 ubiquitin ligase HECW1 promotes the metastasis of non-small cell lung cancer cells through mediating the ubiquitination of SMAD4 [J]. Biochem Cell Biol, 2021, 99(5): 675-681. DOI: 10.1139/bcb-2020-0505. [百度学术]
MEI Z, SHAO Y W, LIN P N, et al. SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients [J]. BMC Cancer, 2018, 18(1): 479. DOI: 10.1186/s12885-018-4298-5. [百度学术]
LIN Z L, ZHANG L, ZHOU J F, et al. Silencing SMAD4 attenuates sensitivity of colorectal cancer cells to cetuximab by promoting epithelial‑mesenchymal transition [J]. Mol Med Rep, 2019, 20(4): 3735-3745. DOI: 10.3892/mmr.2019.10597. [百度学术]
MIZUNO T, CLOYD J M, VICENTE D, et al. SMAD4 gene mutation predicts poor prognosis in patients undergoing resection for colorectal liver metastases [J]. Eur J Surg Oncol, 2018, 44(5): 684-692. DOI: 10.1016/j.ejso.2018.02.247. [百度学术]
SHIN S H, KIM S C, HONG S M, et al. Genetic alterations of K-ras, p53, c-erbB-2, and DPC4 in pancreatic ductal adenocarcinoma and their correlation with patient survival [J]. Pancreas, 2013, 42(2): 216-222. DOI: 10.1097/MPA.0b013e31825b6ab0. [百度学术]
LIU J L, REN G L, LI K S, et al. The SMAD4-MYO18A-PP1A complex regulates β-catenin phosphorylation and pemigatinib resistance by inhibiting PAK1 in cholangiocarcinoma [J]. Cell Death Differ, 2022, 29(4): 818-831. DOI: 10.1038/s41418-021-00897-7. [百度学术]
XU W, LEE S H, QIU F J, et al. Association of SMAD4 loss with drug resistance in clinical cancer patients: a systematic meta-analysis [J]. PLoS One, 2021, 16(5): e0250634. DOI: 10.1371/journal.pone.0250634. [百度学术]
ZIEMKE M, PATIL T, NOLAN K, et al. Reduced SMAD4 expression and DNA topoisomerase inhibitor chemosensitivity in non-small cell lung cancer [J]. Lung Cancer, 2017, 109: 28-35. DOI: 10.1016/j.lungcan.2017.04.017. [百度学术]